f
This commit is contained in:
@@ -4,7 +4,7 @@
|
||||
namespace Similarity
|
||||
{
|
||||
float euclidean_distance(Dna *d1, Dna *d2);// direct distance betwen vector. wont give 0 and 1
|
||||
// float dot_product(Dna *d1, Dna *d2); // doent return betwen 0 to 1
|
||||
float dot_minmax(Dna *d1, Dna *d2); // doent return betwen 0 to 1
|
||||
float cosine_similarity(Dna *d1, Dna *d2);
|
||||
float cosine_similarity_int(Dna *d1, Dna *d2);
|
||||
float hamming_distance(Dna *d1, Dna *d2);
|
||||
|
||||
@@ -2,10 +2,26 @@
|
||||
#include <cmath>
|
||||
#include <algorithm>
|
||||
#include <numeric>
|
||||
#include <raylib.h>
|
||||
#include <chrono>
|
||||
|
||||
namespace Similarity
|
||||
{
|
||||
|
||||
float dot_minmax(Dna *d1, Dna *d2)
|
||||
{
|
||||
uint64_t max = sizeof(Dna) * 255 * 255;
|
||||
uint8_t *a = (uint8_t *)d1;
|
||||
uint8_t *b = (uint8_t *)d2;
|
||||
uint32_t result = 0;
|
||||
for (size_t i = 0; i < sizeof(Dna); ++i)
|
||||
{
|
||||
result += static_cast<uint32_t>(a[i]) * static_cast<uint32_t>(b[i]);
|
||||
}
|
||||
|
||||
return result / (double)max;
|
||||
}
|
||||
|
||||
float euclidean_distance(Dna *d1, Dna *d2)
|
||||
{
|
||||
uint8_t *a = (uint8_t *)d1;
|
||||
@@ -100,8 +116,41 @@ namespace Similarity
|
||||
return 1 - (distance / (end - start));
|
||||
}
|
||||
|
||||
const char *nameofFunc(simil_func f)
|
||||
{
|
||||
if (f == &Similarity::euclidean_distance)
|
||||
{
|
||||
return "eucl";
|
||||
}
|
||||
else if (f == &Similarity::dot_minmax)
|
||||
{
|
||||
return "dot";
|
||||
}
|
||||
else if (f == &Similarity::cosine_similarity)
|
||||
{
|
||||
return "cos";
|
||||
}
|
||||
else if (f == &Similarity::cosine_similarity_int)
|
||||
{
|
||||
return "cos_i";
|
||||
}
|
||||
else if (f == &Similarity::hamming_distance)
|
||||
{
|
||||
return "hamming";
|
||||
}
|
||||
else if (f == &Similarity::levenshtein_distance)
|
||||
{
|
||||
return "leven";
|
||||
}
|
||||
else
|
||||
{
|
||||
return "unknown";
|
||||
}
|
||||
}
|
||||
|
||||
float calc_similarity(std::vector<Dna> &vec, simil_func f)
|
||||
{
|
||||
auto start = std::chrono::high_resolution_clock::now();
|
||||
size_t num_pairs = (vec.size() * (vec.size() - 1)) / 2;
|
||||
|
||||
float total_similarity = 0.0;
|
||||
@@ -113,6 +162,12 @@ namespace Similarity
|
||||
}
|
||||
}
|
||||
float average_similarity = total_similarity / num_pairs;
|
||||
|
||||
auto stop = std::chrono::high_resolution_clock::now();
|
||||
|
||||
const auto int_ms = std::chrono::duration_cast<std::chrono::microseconds>(stop - start);
|
||||
|
||||
TraceLog(LOG_INFO, "%s, %d", nameofFunc(f), int_ms);
|
||||
return average_similarity * 100.0f;
|
||||
}
|
||||
|
||||
@@ -123,7 +178,7 @@ namespace Similarity
|
||||
uint8_t *b = (uint8_t *)d2;
|
||||
|
||||
// Create a distance matrix
|
||||
std::vector<std::vector<uint32_t>> dp(len + 1, std::vector<uint32_t>(len + 1, 0));
|
||||
static std::vector<std::vector<uint32_t>> dp(len + 1, std::vector<uint32_t>(len + 1, 0));
|
||||
|
||||
// Initialize the first row and column
|
||||
for (size_t i = 0; i <= len; ++i)
|
||||
|
||||
14
tmp.txt
Normal file
14
tmp.txt
Normal file
@@ -0,0 +1,14 @@
|
||||
eucl cos cos_i hamming dot leven
|
||||
91 117 181 87 41 105799
|
||||
60 78 305 250 40 100331
|
||||
61 78 121 105 40 97438
|
||||
66 81 124 106 40 97529
|
||||
60 78 127 108 40 96296
|
||||
62 85 131 104 39 96456
|
||||
61 81 125 106 40 96510
|
||||
61 81 125 103 40 97253
|
||||
61 81 125 78 40 97409
|
||||
60 82 125 103 40 99816
|
||||
62 81 128 81 40 98978
|
||||
68 81 126 58 40 98289
|
||||
61 88 130 60 39 99663
|
||||
@@ -105,8 +105,8 @@ void Vapp::update()
|
||||
simil[1] = Similarity::calc_similarity(manager.vector, Similarity::cosine_similarity);
|
||||
simil[2] = Similarity::calc_similarity(manager.vector, Similarity::cosine_similarity_int);
|
||||
simil[3] = Similarity::calc_similarity(manager.vector, Similarity::hamming_distance);
|
||||
simil[4] = Similarity::calc_similarity(manager.vector, Similarity::hamming_distance_without_seeds);
|
||||
simil[5] = Similarity::calc_similarity(manager.vector, Similarity::levenshtein_distance);
|
||||
simil[4] = Similarity::calc_similarity(manager.vector, Similarity::levenshtein_distance);
|
||||
simil[5] = Similarity::calc_similarity(manager.vector, Similarity::dot_minmax);
|
||||
stageOfDrawing = DrawingStage::save;
|
||||
break;
|
||||
case DrawingStage::save:
|
||||
@@ -185,8 +185,8 @@ void Vapp::draw()
|
||||
ImGui::LabelText("##sim2", "cosine_similarity: %f", simil[1]);
|
||||
ImGui::LabelText("##sim3", "cosine_similarity_int: %f", simil[2]);
|
||||
ImGui::LabelText("##sim4", "hamming_distance: %f", simil[3]);
|
||||
ImGui::LabelText("##sim5", "hamming_distance_without_seeds: %f", simil[4]);
|
||||
ImGui::LabelText("##sim6", "levenshtein_distance: %f", simil[5]);
|
||||
ImGui::LabelText("##sim5", "levenshtein_distance: %f", simil[4]);
|
||||
ImGui::LabelText("##sim6", "dot_minmax: %f", simil[5]);
|
||||
|
||||
const ImGuiTableFlags flags = ImGuiTableFlags_NoHostExtendX | ImGuiTableFlags_SizingFixedFit | ImGuiTableFlags_Resizable | ImGuiTableFlags_BordersOuter | ImGuiTableFlags_BordersV | ImGuiTableFlags_ContextMenuInBody;
|
||||
const int columns = numberOfFunc + 1;
|
||||
@@ -206,9 +206,9 @@ void Vapp::draw()
|
||||
ImGui::TableSetColumnIndex(4);
|
||||
ImGui::Text("hamming_distance");
|
||||
ImGui::TableSetColumnIndex(5);
|
||||
ImGui::Text("hamming_distance_without_seeds");
|
||||
ImGui::TableSetColumnIndex(6);
|
||||
ImGui::Text("levenshtein_distance");
|
||||
ImGui::TableSetColumnIndex(6);
|
||||
ImGui::Text("dot_minmax");
|
||||
|
||||
for (int row = 0; row < similTable.size(); row++)
|
||||
{
|
||||
@@ -325,8 +325,8 @@ void Vapp::setUpTable()
|
||||
similTable[s][1] = Similarity::calc_similarity(manager.vector, Similarity::cosine_similarity);
|
||||
similTable[s][2] = Similarity::calc_similarity(manager.vector, Similarity::cosine_similarity_int);
|
||||
similTable[s][3] = Similarity::calc_similarity(manager.vector, Similarity::hamming_distance);
|
||||
similTable[s][4] = Similarity::calc_similarity(manager.vector, Similarity::hamming_distance_without_seeds);
|
||||
similTable[s][5] = Similarity::calc_similarity(manager.vector, Similarity::levenshtein_distance);
|
||||
similTable[s][4] = Similarity::calc_similarity(manager.vector, Similarity::levenshtein_distance);
|
||||
similTable[s][5] = Similarity::calc_similarity(manager.vector, Similarity::dot_minmax);
|
||||
DnaManager::newGen(&manager);
|
||||
}
|
||||
else
|
||||
@@ -341,8 +341,8 @@ void Vapp::setUpTable()
|
||||
sprintf(buff, "%ld.txt", id);
|
||||
std::ofstream file(buff);
|
||||
|
||||
file << "| index | euclidean_distance | cosine_similarity | cosine_similarity_int | hamming_distance | hamming_distance_without_seeds | levenshtein_distance |\n";
|
||||
file << "| --- | --- | --- | --- | --- | --- | --- |\n";
|
||||
file << "| index | euclidean_distance | cosine_similarity | cosine_similarity_int | hamming_distance | levenshtein_distance | dot_minmax |\n";
|
||||
file << "| --- | --- | --- | --- | --- | --- | --- |\n";
|
||||
|
||||
|
||||
|
||||
|
||||
Reference in New Issue
Block a user