130 lines
3.5 KiB
Python
130 lines
3.5 KiB
Python
import cv2
|
|
import numpy as np
|
|
import matplotlib.pyplot as plt
|
|
from skimage.feature import hog
|
|
from sklearn.neighbors import KNeighborsClassifier
|
|
from sklearn.metrics import accuracy_score
|
|
from sklearn.model_selection import train_test_split
|
|
from sklearn.metrics import classification_report
|
|
from sklearn import svm
|
|
from sklearn import tree
|
|
import pickle
|
|
import os
|
|
|
|
def lbp(image):
|
|
height, width = image.shape[:2]
|
|
lbp_image = np.zeros_like(image, dtype=np.uint8)
|
|
|
|
for y in range(1, height-1):
|
|
for x in range(1, width-1):
|
|
center = image[y, x]
|
|
code = 0
|
|
|
|
# Compare the pixel values of the neighborhood with the center pixel
|
|
code |= (image[y-1, x-1] > center) << 7
|
|
code |= (image[y-1, x] > center) << 6
|
|
code |= (image[y-1, x+1] > center) << 5
|
|
code |= (image[y, x+1] > center) << 4
|
|
code |= (image[y+1, x+1] > center) << 3
|
|
code |= (image[y+1, x] > center) << 2
|
|
code |= (image[y+1, x-1] > center) << 1
|
|
code |= (image[y, x-1] > center) << 0
|
|
|
|
lbp_image[y, x] = code
|
|
|
|
return lbp_image
|
|
|
|
def load_data(pictures, marks):
|
|
pictures = np.load(pictures)
|
|
marks = np.load(marks)
|
|
|
|
return pictures, marks
|
|
|
|
def get_data(folder_path):
|
|
img_data = []
|
|
marks = []
|
|
i = 0
|
|
for root, dirs, files in os.walk(folder_path):
|
|
for file in files:
|
|
file_path = os.path.join(root, file)
|
|
|
|
if 'c' in file_path:
|
|
marks.append(1)
|
|
else:
|
|
marks.append(0)
|
|
|
|
img = cv2.imread(file_path)
|
|
img = cv2.resize(img, (100, 100))
|
|
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
|
|
|
lbpHist = cv2.calcHist([lbp(gray)], [0], None, [256], [0, 256])
|
|
lbpHist = lbpHist.astype(np.float64)
|
|
lbpHist = lbpHist.flatten()
|
|
|
|
hogFeatures = hog(gray, orientations=9, pixels_per_cell=(10, 10), cells_per_block=(2, 2), block_norm='L2-Hys')
|
|
|
|
features = np.concatenate((lbpHist, hogFeatures), axis=0)
|
|
img_data.append(features)
|
|
print(i)
|
|
i += 1
|
|
|
|
|
|
img_data = np.array(img_data)
|
|
marks = np.array(marks)
|
|
return img_data, marks
|
|
|
|
def save_data(img_data, marks, img_data_path, marks_data_path):
|
|
np.save(img_data_path, img_data)
|
|
np.save(marks_data_path, marks)
|
|
|
|
def train_and_save_model(img_data, marks):
|
|
|
|
#---------------------KNN-------------------
|
|
knn = KNeighborsClassifier(n_neighbors=5)
|
|
knn.fit(img_data, marks)
|
|
knnPickle = open('Models\\knn.bin', 'wb')
|
|
pickle.dump(knn, knnPickle)
|
|
knnPickle.close()
|
|
|
|
#------------------SVM----------------------
|
|
svmM = svm.SVC()
|
|
svmM.fit(img_data, marks)
|
|
svmPickle = open('Models\\svm.bin', 'wb')
|
|
pickle.dump(svmM, svmPickle)
|
|
svmPickle.close()
|
|
|
|
#------------------DT----------------------
|
|
dt = tree.DecisionTreeClassifier()
|
|
dt.fit(img_data, marks)
|
|
dtPickle = open('Models\\dt.bin', 'wb')
|
|
pickle.dump(dt, dtPickle)
|
|
dtPickle.close()
|
|
|
|
def load_model():
|
|
|
|
#---------------------KNN-------------------
|
|
knnPickle = open('Models\\knn.bin', 'rb')
|
|
knn = pickle.load(knnPickle)
|
|
knnPickle.close()
|
|
|
|
#------------------SVM----------------------
|
|
svmPickle = open('Models\\svm.bin', 'rb')
|
|
svm = pickle.load(svmPickle)
|
|
svmPickle.close()
|
|
|
|
#------------------DT----------------------
|
|
dtPickle = open('Models\\dt.bin', 'rb')
|
|
dt = pickle.load(dtPickle)
|
|
dtPickle.close()
|
|
|
|
return knn, svm, dt
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|