201 lines
6.8 KiB
Python

import numpy as np
import cv2
import random
def findClosestCentroids3(img, centroids):
closestCentroi = np.zeros((img.shape[0],img.shape[1]), np.uint8)
klusters = centroids.shape[0]
for i in range(img.shape[0]):
for j in range(img.shape[1]):
dist = np.zeros(klusters, np.float32)
for l in range(klusters):
# calculate the distance between the pixel and the centroid
dist[l] = np.sqrt(
((img[i][j][0] - centroids[l][0]) ** 2)+
((img[i][j][1] - centroids[l][1]) ** 2)+
((img[i][j][2] - centroids[l][2]) ** 2))
#assign the pixel to the cluster with the nearest centroid human readable
#closestCentroi[i, j] = np.argmin(dist) * 255 / (klusters - 1)
closestCentroi[i, j] = np.argmin(dist)
return closestCentroi
def calculateNewCenter3(img, centroids, closestCentroi):
newCentroids = np.zeros(centroids.shape, np.float32)
klusters = centroids.shape[0]
centroidsCount = np.zeros(klusters, np.float32)
for i in range(img.shape[0]):
for j in range(img.shape[1]):
newCentroids[closestCentroi[i][j]] += img[i][j]
centroidsCount[closestCentroi[i][j]] += 1
for i in range(klusters):
if centroidsCount[i] == 0:
centroidsCount[i] = 1
newCentroids[i] /= centroidsCount[i]
return newCentroids
def kmeans3(img, centroids, iterations):
for i in range(iterations):
print("Iteration: ", i)
closestCentroi = findClosestCentroids3(img, centroids)
# cv2.imshow('closestCentroi', closestCentroi)
# cv2.waitKey(0)
# cv2.destroyAllWindows()
centroids = calculateNewCenter3(img, centroids, closestCentroi)
commpressedImg = np.zeros(img.shape, np.uint8)
for i in range(img.shape[0]):
for j in range(img.shape[1]):
commpressedImg[i][j] = centroids[closestCentroi[i][j]]
return commpressedImg
def findClosestCentroids5(img, centroids, locations):
closestCentroi = np.zeros((img.shape[0],img.shape[1]), np.uint8)
klusters = centroids.shape[0]
for i in range(img.shape[0]):
for j in range(img.shape[1]):
dist = np.zeros(klusters, np.float32)
for l in range(klusters):
# calculate the distance between the pixel and the centroid
dist[l] = np.sqrt(
((img[i][j][0] - centroids[l][0]) ** 2)+
((img[i][j][1] - centroids[l][1]) ** 2)+
((img[i][j][2] - centroids[l][2]) ** 2)+
((i - locations[l][0]) ** 2)+
((j - locations[l][1]) ** 2))
# assign the pixel to the cluster with the nearest centroid human readable
#closestCentroi[i, j] = np.argmin(dist) * 255 / (klusters - 1)
closestCentroi[i, j] = np.argmin(dist)
return closestCentroi
def calculateNewCenter5(img, centroids, locations, closestCentroi):
newCentroids = np.zeros(centroids.shape, np.float32)
newLocations = np.zeros(locations.shape, np.float32)
klusters = centroids.shape[0]
centroidsCount = np.zeros(klusters, np.float32)
for i in range(img.shape[0]):
for j in range(img.shape[1]):
newCentroids[closestCentroi[i][j]] += img[i][j]
newLocations[closestCentroi[i][j]] += [i,j]
centroidsCount[closestCentroi[i][j]] += 1
for i in range(klusters):
if centroidsCount[i] == 0:
centroidsCount[i] = 1
newCentroids[i] /= centroidsCount[i]
newLocations[i] /= centroidsCount[i]
return newCentroids, newLocations
def kmeans5(img, centroids, locations, iterations):
for i in range(iterations):
print("Iteration: ", i)
closestCentroi = findClosestCentroids5(img, centroids, locations)
centroids, locations = calculateNewCenter5(img, centroids, locations, closestCentroi)
commpressedImg = np.zeros(img.shape, np.uint8)
for i in range(img.shape[0]):
for j in range(img.shape[1]):
commpressedImg[i][j] = centroids[closestCentroi[i][j]]
return commpressedImg
def kmeans(img, centroids, locations, iterations, dim):
if dim == 5:
commpressedImg = kmeans5(img, centroids, locations, iterations)
else:
commpressedImg = kmeans3(img, centroids, iterations)
return commpressedImg
def click_event(event, x, y, flags, params):
global points
global locations
if event == cv2.EVENT_LBUTTONDOWN:
print(f'({y},{x})')
points = np.append(points, [img[y,x]] , axis=0)
locations = np.append(locations, [[y,x]] , axis=0)
def selectPointsM(img):
cv2.namedWindow('Select color')
cv2.setMouseCallback('Select color', click_event)
while True:
cv2.imshow('Select color', img)
if cv2.waitKey(1) & 0xFF == 27:
break
cv2.destroyAllWindows()
T = 50
def selectPointsR(img, stDimenzij):
global points
global locations
global T
numOfPoints = input('Vnesi stevilo tock:')
i = 0
while i < int(numOfPoints):
x = random.randint(0, img.shape[0]-1)
y = random.randint(0, img.shape[1]-1)
point = img[x,y]
location = [x,y]
add = True
if stDimenzij == 3:
for j in range(points.shape[0]):
dist = np.sqrt(
((points[j][0] - point[0]) ** 2)+
((points[j][1] - point[1]) ** 2)+
((points[j][2] - point[2]) ** 2))
if dist < T:
add = False
break
else:
for j in range(points.shape[0]):
dist = np.sqrt(
((points[j][0] - point[0]) ** 2)+
((points[j][1] - point[1]) ** 2)+
((points[j][2] - point[2]) ** 2)+
((locations[j][0] - location[0]) ** 2)+
((locations[j][1] - location[1]) ** 2))
if dist < T:
add = False
break
if add:
points = np.append(points, [point] , axis=0)
locations = np.append(locations, [location] , axis=0)
i += 1
# read the input image
img = cv2.imread('veg.jpg' , 1)
points = np.empty((0, 3), dtype=np.float32)
locations = np.empty((0, 2), dtype=np.float32)
stDimenzij = input('Vnesi stevilo dimenzij 3 ali 5:')
stIteracij = input('Vnesi stevilo iteracij:')
selectType = input('Vnesi 1 za rocno izbiro, 2 za random izbiro:')
if selectType == '1':
selectPointsM(img)
else:
selectPointsR(img, int(stDimenzij))
commpressedImg = kmeans(img, points, locations, int(stIteracij), int(stDimenzij))
cv2.imshow('Original image',img)
cv2.imshow('Compressed image',commpressedImg)
cv2.waitKey(0)
cv2.destroyAllWindows()