201 lines
6.8 KiB
Python
201 lines
6.8 KiB
Python
import numpy as np
|
|
import cv2
|
|
import random
|
|
|
|
def findClosestCentroids3(img, centroids):
|
|
closestCentroi = np.zeros((img.shape[0],img.shape[1]), np.uint8)
|
|
klusters = centroids.shape[0]
|
|
for i in range(img.shape[0]):
|
|
for j in range(img.shape[1]):
|
|
dist = np.zeros(klusters, np.float32)
|
|
for l in range(klusters):
|
|
# calculate the distance between the pixel and the centroid
|
|
dist[l] = np.sqrt(
|
|
((img[i][j][0] - centroids[l][0]) ** 2)+
|
|
((img[i][j][1] - centroids[l][1]) ** 2)+
|
|
((img[i][j][2] - centroids[l][2]) ** 2))
|
|
|
|
|
|
#assign the pixel to the cluster with the nearest centroid human readable
|
|
#closestCentroi[i, j] = np.argmin(dist) * 255 / (klusters - 1)
|
|
closestCentroi[i, j] = np.argmin(dist)
|
|
|
|
return closestCentroi
|
|
|
|
def calculateNewCenter3(img, centroids, closestCentroi):
|
|
newCentroids = np.zeros(centroids.shape, np.float32)
|
|
klusters = centroids.shape[0]
|
|
centroidsCount = np.zeros(klusters, np.float32)
|
|
for i in range(img.shape[0]):
|
|
for j in range(img.shape[1]):
|
|
newCentroids[closestCentroi[i][j]] += img[i][j]
|
|
centroidsCount[closestCentroi[i][j]] += 1
|
|
|
|
for i in range(klusters):
|
|
if centroidsCount[i] == 0:
|
|
centroidsCount[i] = 1
|
|
newCentroids[i] /= centroidsCount[i]
|
|
|
|
return newCentroids
|
|
|
|
def kmeans3(img, centroids, iterations):
|
|
for i in range(iterations):
|
|
print("Iteration: ", i)
|
|
closestCentroi = findClosestCentroids3(img, centroids)
|
|
# cv2.imshow('closestCentroi', closestCentroi)
|
|
# cv2.waitKey(0)
|
|
# cv2.destroyAllWindows()
|
|
centroids = calculateNewCenter3(img, centroids, closestCentroi)
|
|
|
|
commpressedImg = np.zeros(img.shape, np.uint8)
|
|
for i in range(img.shape[0]):
|
|
for j in range(img.shape[1]):
|
|
commpressedImg[i][j] = centroids[closestCentroi[i][j]]
|
|
|
|
return commpressedImg
|
|
|
|
def findClosestCentroids5(img, centroids, locations):
|
|
closestCentroi = np.zeros((img.shape[0],img.shape[1]), np.uint8)
|
|
klusters = centroids.shape[0]
|
|
for i in range(img.shape[0]):
|
|
for j in range(img.shape[1]):
|
|
dist = np.zeros(klusters, np.float32)
|
|
for l in range(klusters):
|
|
# calculate the distance between the pixel and the centroid
|
|
dist[l] = np.sqrt(
|
|
((img[i][j][0] - centroids[l][0]) ** 2)+
|
|
((img[i][j][1] - centroids[l][1]) ** 2)+
|
|
((img[i][j][2] - centroids[l][2]) ** 2)+
|
|
((i - locations[l][0]) ** 2)+
|
|
((j - locations[l][1]) ** 2))
|
|
|
|
|
|
# assign the pixel to the cluster with the nearest centroid human readable
|
|
#closestCentroi[i, j] = np.argmin(dist) * 255 / (klusters - 1)
|
|
closestCentroi[i, j] = np.argmin(dist)
|
|
|
|
return closestCentroi
|
|
|
|
def calculateNewCenter5(img, centroids, locations, closestCentroi):
|
|
newCentroids = np.zeros(centroids.shape, np.float32)
|
|
newLocations = np.zeros(locations.shape, np.float32)
|
|
klusters = centroids.shape[0]
|
|
centroidsCount = np.zeros(klusters, np.float32)
|
|
for i in range(img.shape[0]):
|
|
for j in range(img.shape[1]):
|
|
newCentroids[closestCentroi[i][j]] += img[i][j]
|
|
newLocations[closestCentroi[i][j]] += [i,j]
|
|
centroidsCount[closestCentroi[i][j]] += 1
|
|
|
|
for i in range(klusters):
|
|
if centroidsCount[i] == 0:
|
|
centroidsCount[i] = 1
|
|
newCentroids[i] /= centroidsCount[i]
|
|
newLocations[i] /= centroidsCount[i]
|
|
|
|
return newCentroids, newLocations
|
|
|
|
def kmeans5(img, centroids, locations, iterations):
|
|
for i in range(iterations):
|
|
print("Iteration: ", i)
|
|
closestCentroi = findClosestCentroids5(img, centroids, locations)
|
|
centroids, locations = calculateNewCenter5(img, centroids, locations, closestCentroi)
|
|
|
|
commpressedImg = np.zeros(img.shape, np.uint8)
|
|
for i in range(img.shape[0]):
|
|
for j in range(img.shape[1]):
|
|
commpressedImg[i][j] = centroids[closestCentroi[i][j]]
|
|
|
|
return commpressedImg
|
|
|
|
def kmeans(img, centroids, locations, iterations, dim):
|
|
|
|
if dim == 5:
|
|
commpressedImg = kmeans5(img, centroids, locations, iterations)
|
|
else:
|
|
commpressedImg = kmeans3(img, centroids, iterations)
|
|
|
|
return commpressedImg
|
|
|
|
def click_event(event, x, y, flags, params):
|
|
global points
|
|
global locations
|
|
if event == cv2.EVENT_LBUTTONDOWN:
|
|
print(f'({y},{x})')
|
|
points = np.append(points, [img[y,x]] , axis=0)
|
|
locations = np.append(locations, [[y,x]] , axis=0)
|
|
|
|
def selectPointsM(img):
|
|
cv2.namedWindow('Select color')
|
|
cv2.setMouseCallback('Select color', click_event)
|
|
|
|
while True:
|
|
cv2.imshow('Select color', img)
|
|
if cv2.waitKey(1) & 0xFF == 27:
|
|
break
|
|
|
|
cv2.destroyAllWindows()
|
|
|
|
T = 50
|
|
def selectPointsR(img, stDimenzij):
|
|
global points
|
|
global locations
|
|
global T
|
|
numOfPoints = input('Vnesi stevilo tock:')
|
|
|
|
i = 0
|
|
while i < int(numOfPoints):
|
|
x = random.randint(0, img.shape[0]-1)
|
|
y = random.randint(0, img.shape[1]-1)
|
|
point = img[x,y]
|
|
location = [x,y]
|
|
|
|
add = True
|
|
|
|
if stDimenzij == 3:
|
|
for j in range(points.shape[0]):
|
|
dist = np.sqrt(
|
|
((points[j][0] - point[0]) ** 2)+
|
|
((points[j][1] - point[1]) ** 2)+
|
|
((points[j][2] - point[2]) ** 2))
|
|
if dist < T:
|
|
add = False
|
|
break
|
|
else:
|
|
for j in range(points.shape[0]):
|
|
dist = np.sqrt(
|
|
((points[j][0] - point[0]) ** 2)+
|
|
((points[j][1] - point[1]) ** 2)+
|
|
((points[j][2] - point[2]) ** 2)+
|
|
((locations[j][0] - location[0]) ** 2)+
|
|
((locations[j][1] - location[1]) ** 2))
|
|
if dist < T:
|
|
add = False
|
|
break
|
|
|
|
if add:
|
|
points = np.append(points, [point] , axis=0)
|
|
locations = np.append(locations, [location] , axis=0)
|
|
i += 1
|
|
|
|
|
|
# read the input image
|
|
img = cv2.imread('veg.jpg' , 1)
|
|
points = np.empty((0, 3), dtype=np.float32)
|
|
locations = np.empty((0, 2), dtype=np.float32)
|
|
|
|
stDimenzij = input('Vnesi stevilo dimenzij 3 ali 5:')
|
|
stIteracij = input('Vnesi stevilo iteracij:')
|
|
selectType = input('Vnesi 1 za rocno izbiro, 2 za random izbiro:')
|
|
|
|
if selectType == '1':
|
|
selectPointsM(img)
|
|
else:
|
|
selectPointsR(img, int(stDimenzij))
|
|
|
|
commpressedImg = kmeans(img, points, locations, int(stIteracij), int(stDimenzij))
|
|
|
|
cv2.imshow('Original image',img)
|
|
cv2.imshow('Compressed image',commpressedImg)
|
|
cv2.waitKey(0)
|
|
cv2.destroyAllWindows() |