import cv2 import numpy as np import matplotlib.pyplot as plt from skimage.feature import hog from sklearn.neighbors import KNeighborsClassifier from sklearn.metrics import accuracy_score from sklearn.model_selection import train_test_split from sklearn.metrics import classification_report from sklearn import svm from sklearn import tree import pickle from implement import train_and_save_model, save_data, get_data, load_data print("Train") img_data_path = "Data\\train_img_data.npy" marks_data_path = "Data\\train_marks.npy" train_baza_path = "Baza\\Pet1000" print("loading data") if False: img_data, marks = get_data(train_baza_path) save_data(img_data, marks, img_data_path, marks_data_path) else: img_data, marks = load_data(img_data_path, marks_data_path) print("Training") train_and_save_model(img_data, marks) print("End")