import cv2 import numpy as np locations = np.empty((0,2), dtype=np.int32) def click_event(event, x, y, flags, params): global locations if event == cv2.EVENT_LBUTTONDOWN: print(img[y][x]) locations = np.append(locations, [[y,x]] , axis=0) def selectPointsM(img): global locations cv2.namedWindow('Select color') cv2.setMouseCallback('Select color', click_event) while True: cv2.imshow('Select color', img) if cv2.waitKey(1) & 0xFF == 27: break cv2.destroyAllWindows() return locations def MeanShift(src, window, criteria): for _ in range(criteria[1]): ret, window = Iteration(src, window, criteria[2]) if ret: return (True, window) return (False, window) def Iteration(src, window, criteria): if window[0] < 0: window = (0, window[1], window[2], window[3]) if window[1] < 0: window = (window[0], 0, window[2], window[3]) roi = src[window[1]:window[1]+window[3], window[0]:window[0]+window[2]] #iteracija 1 # x = 0 # y = 0 # num = 0 # for i in range(roi.shape[0]): # for j in range(roi.shape[1]): # if roi[i][j] > 0: # x += j # y += i # num += 1 #iteracija 2 # nonzero_indices = np.nonzero(roi) # nonzero_values = roi[nonzero_indices] # x = np.sum(nonzero_indices[1]) # y = np.sum(nonzero_indices[0]) # num = np.count_nonzero(nonzero_values) #iteracija 3 mom = cv2.moments(roi) x = 0 y = 0 if mom['m00'] != 0: x = int(mom['m10'] / mom['m00']) y = int(mom['m01'] / mom['m00']) x = int(x - window[2] / 2) y = int(y - window[3] / 2) window = (window[0] + x, window[1] + y, window[2], window[3]) if x < criteria and y < criteria: return (True, window) return (False, window) def CamShift(src, window, criteria): ret = False for _ in range(criteria[1]): ret, window = Iteration(src, window, criteria[2]) window = changeSize(src, window) return (ret, window) def changeSize(src, window): roi = src[window[1]:window[1]+window[3], window[0]:window[0]+window[2]] mom = cv2.moments(roi) ratio = window[2] / window[3] if mom['m00'] != 0: w = 2 * np.sqrt(mom['m00'] / 256) h = w / ratio window = (window[0], window[1], int(w), int(h)) if window[0] < 0: window = (0, window[1], window[2], window[3]) if window[1] < 0: window = (window[0], 0, window[2], window[3]) if window[0] + window[2] > src.shape[1]: window = (src.shape[1] - window[2], window[1], window[2], window[3]) if window[1] + window[3] > src.shape[0]: window = (window[0], src.shape[0] - window[3], window[2], window[3]) if window[2] < 10: window = (window[0], window[1], 10, window[3]) if window[3] < 10: window = (window[0], window[1], window[2], 10) return window def selectObjectH(frame, target_hist): target_hist = target_hist.astype(np.float32) cv2.normalize(target_hist, target_hist, 0, 1, cv2.NORM_MINMAX) hsvImg = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV) h_channel = hsvImg[:, :, 0] #s_channel = hsvImg[:, :, 1] #probabilityImg = np.zeros(shape=(hsvImg.shape[0], hsvImg.shape[1], 1) , dtype=np.float32) # Stack the H and S channels # hs_img = np.stack((h_channel, s_channel), axis=-1) # for i in range(hs_img.shape[0]): # for j in range(hs_img.shape[1]): # probabilityImg[i][j] = target_hist[int(h_channel[i][j])] # satProp = target_hist[int(hs_img[i][j][1])] # probabilityImg[i][j] = hueProp * satProp probabilityImg = target_hist[h_channel.astype(np.uint8)] cv2.normalize(probabilityImg, probabilityImg, 0, 255, cv2.NORM_MINMAX) probabilityImg = probabilityImg.astype(np.uint8) mask = cv2.inRange(probabilityImg, 100, 255) contour, _ = cv2.findContours(mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) maxContour = max(contour, key=cv2.contourArea) x, y, w, h = cv2.boundingRect(maxContour) return (x, y, w, h) def selectObjectHS(frame, target_hist): target_hist = target_hist.astype(np.float32) cv2.normalize(target_hist, target_hist, 0, 1, cv2.NORM_MINMAX) hsvImg = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV) # probabilityImg = np.zeros(shape=(hsvImg.shape[0], hsvImg.shape[1], 1) , dtype=np.float32) # for i in range(hsvImg.shape[0]): # for j in range(hsvImg.shape[1]): # hueProp = target_hist[int(hsvImg[i][j][0])][0] # satProp = target_hist[int(hsvImg[i][j][1])][1] # probabilityImg[i][j] = hueProp * satProp hue_values = hsvImg[..., 0].astype(np.uint8) sat_values = hsvImg[..., 1].astype(np.uint8) hue_props = target_hist[hue_values.flatten(), 0].reshape(hsvImg.shape[:2]) sat_props = target_hist[sat_values.flatten(), 1].reshape(hsvImg.shape[:2]) probabilityImg = (hue_props * sat_props).astype(np.float32) cv2.normalize(probabilityImg, probabilityImg, 0, 255, cv2.NORM_MINMAX) probabilityImg = probabilityImg.astype(np.uint8) mask = cv2.inRange(probabilityImg, 100, 255) contour, _ = cv2.findContours(mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) maxContour = max(contour, key=cv2.contourArea) x, y, w, h = cv2.boundingRect(maxContour) return (x, y, w, h) def selectObject(frame, target_hist): if target_hist.shape[0] == 180: return selectObjectH(frame, target_hist) else: return selectObjectHS(frame, target_hist) def calcHistH(roi): histogram = np.zeros(180, dtype=int) for i in range(roi.shape[0]): for j in range(roi.shape[1]): histogram[roi[i][j][0]] += 1 return histogram def calcHistHS(roi): histogramH = np.zeros(256, dtype=int) histogramS = np.zeros(256, dtype=int) for i in range(roi.shape[0]): for j in range(roi.shape[1]): histogramH[roi[i][j][0]] += 1 histogramS[roi[i][j][1]] += 1 histogram = np.stack(arrays=(histogramH, histogramS), axis=-1) return histogram def calcHist(roi, numOfchannels=1): if numOfchannels == 1: return calcHistH(roi) else: return calcHistHS(roi) def calcBackProjectH(frame, target_hist): target_hist = target_hist.astype(np.float32) cv2.normalize(target_hist, target_hist, 0, 1, cv2.NORM_MINMAX) hsvImg = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV) h_channel = hsvImg[:, :, 0] probabilityImg = target_hist[h_channel.astype(np.uint8)] cv2.normalize(probabilityImg, probabilityImg, 0, 255, cv2.NORM_MINMAX) return probabilityImg.astype(np.uint8) def calcBackProjectHS(frame, target_hist): target_hist = target_hist.astype(np.float32) cv2.normalize(target_hist, target_hist, 0, 1, cv2.NORM_MINMAX) hsvImg = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV) hue_values = hsvImg[..., 0].astype(np.uint8) sat_values = hsvImg[..., 1].astype(np.uint8) hue_props = target_hist[hue_values.flatten(), 0].reshape(hsvImg.shape[:2]) sat_props = target_hist[sat_values.flatten(), 1].reshape(hsvImg.shape[:2]) probabilityImg = (hue_props * sat_props).astype(np.float32) cv2.normalize(probabilityImg, probabilityImg, 0, 255, cv2.NORM_MINMAX) return probabilityImg.astype(np.uint8) def calcBackProject(frame, target_hist): if target_hist.shape[0] == 180: return calcBackProjectH(frame, target_hist) else: return calcBackProjectHS(frame, target_hist)