Cryptography is back

This commit is contained in:
Nikola Petrov 2024-01-15 16:40:07 +01:00
parent 43e9aa8553
commit 4146bd9092
5 changed files with 684 additions and 33 deletions

88
include/aes256.hpp Normal file
View File

@ -0,0 +1,88 @@
/*
* aes256.hpp
*
* Copyright (c) 2014, Danilo Treffiletti <urban82@gmail.com>
* All rights reserved.
*
* This file is part of Aes256.
*
* Aes256 is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as
* published by the Free Software Foundation, either version 2.1
* of the License, or (at your option) any later version.
*
* Aes256 is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with Aes256.
* If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef AES256_HPP
#define AES256_HPP
#include <vector>
typedef std::vector<unsigned char> ByteArray;
#define BLOCK_SIZE 16
class Aes256 {
public:
Aes256(const ByteArray& key);
~Aes256();
static ByteArray::size_type encrypt(const ByteArray& key, const ByteArray& plain, ByteArray& encrypted);
static ByteArray::size_type encrypt(const ByteArray& key, const unsigned char* plain, const ByteArray::size_type plain_length, ByteArray& encrypted);
static ByteArray::size_type decrypt(const ByteArray& key, const ByteArray& encrypted, ByteArray& plain);
static ByteArray::size_type decrypt(const ByteArray& key, const unsigned char* encrypted, const ByteArray::size_type encrypted_length, ByteArray& plain);
ByteArray::size_type encrypt_start(const ByteArray::size_type plain_length, ByteArray& encrypted);
ByteArray::size_type encrypt_continue(const ByteArray& plain, ByteArray& encrypted);
ByteArray::size_type encrypt_continue(const unsigned char* plain, const ByteArray::size_type plain_length, ByteArray& encrypted);
ByteArray::size_type encrypt_end(ByteArray& encrypted);
ByteArray::size_type decrypt_start(const ByteArray::size_type encrypted_length);
ByteArray::size_type decrypt_continue(const ByteArray& encrypted, ByteArray& plain);
ByteArray::size_type decrypt_continue(const unsigned char* encrypted, const ByteArray::size_type encrypted_length, ByteArray& plain);
ByteArray::size_type decrypt_end(ByteArray& plain);
private:
ByteArray m_key;
ByteArray m_salt;
ByteArray m_rkey;
unsigned char m_buffer[3 * BLOCK_SIZE];
unsigned char m_buffer_pos;
ByteArray::size_type m_remainingLength;
bool m_decryptInitialized;
void check_and_encrypt_buffer(ByteArray& encrypted);
void check_and_decrypt_buffer(ByteArray& plain);
void encrypt(unsigned char *buffer);
void decrypt(unsigned char *buffer);
void expand_enc_key(unsigned char *rc);
void expand_dec_key(unsigned char *rc);
void sub_bytes(unsigned char *buffer);
void sub_bytes_inv(unsigned char *buffer);
void copy_key();
void add_round_key(unsigned char *buffer, const unsigned char round);
void shift_rows(unsigned char *buffer);
void shift_rows_inv(unsigned char *buffer);
void mix_columns(unsigned char *buffer);
void mix_columns_inv(unsigned char *buffer);
};
#endif /* AES256_HPP */

View File

@ -3,25 +3,18 @@
#include <cstdint>
struct evp_cipher_ctx_st;
typedef struct evp_cipher_ctx_st EVP_CIPHER_CTX;
class Buffer;
class Cryptography
{
public:
Cryptography(const char *password, size_t size);
Cryptography(std::string password);
~Cryptography();
bool encrypt(Buffer *plain, Buffer *encrypted);
bool decrypt(Buffer *encrypted, Buffer *decrypted);
bool generate_key_and_iv_from_password(const char *password, size_t size);
private:
uint8_t key[32] = {0};
uint8_t iv[16] = {0};
EVP_CIPHER_CTX *ctx = nullptr;
bool handleErrors();
std::string key;
};
#endif

View File

@ -7,9 +7,7 @@
#include "func.hpp"
#include "arg_func.hpp"
#ifdef _DEBUG
#define DEBUG 0
#endif // DEBUG
int main(int argc, char **argv)
{
@ -75,7 +73,7 @@ int main(int argc, char **argv)
}
#endif // !1
Cryptography crypto(user_pass.c_str(), user_pass.size());
Cryptography crypto(user_pass);
Buffer decrypted_buffer;
// check if encrypted buffer is empty if not, decrypt it

578
source/aes256.cpp Normal file
View File

@ -0,0 +1,578 @@
/*
* aes256.cpp
*
* Copyright (c) 2014, Danilo Treffiletti <urban82@gmail.com>
* All rights reserved.
*
* This file is part of Aes256.
*
* Aes256 is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as
* published by the Free Software Foundation, either version 2.1
* of the License, or (at your option) any later version.
*
* Aes256 is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with Aes256.
* If not, see <http://www.gnu.org/licenses/>.
*/
#include "aes256.hpp"
#include <iostream>
#include <stdlib.h>
#define FE(x) (((x) << 1) ^ ((((x) >> 7) & 1) * 0x1b))
#define FD(x) (((x) >> 1) ^ (((x) & 1) ? 0x8d : 0))
#define KEY_SIZE 32
#define NUM_ROUNDS 14
unsigned char rj_xtime(unsigned char x);
const unsigned char sbox[256] = {
0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5,
0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76,
0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0,
0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0,
0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc,
0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15,
0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a,
0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75,
0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0,
0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84,
0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b,
0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf,
0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85,
0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8,
0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5,
0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2,
0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17,
0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73,
0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88,
0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb,
0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c,
0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79,
0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9,
0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08,
0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6,
0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a,
0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e,
0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e,
0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94,
0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf,
0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68,
0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16};
const unsigned char sboxinv[256] = {
0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38,
0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb,
0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87,
0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb,
0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d,
0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e,
0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2,
0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25,
0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16,
0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92,
0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda,
0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84,
0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a,
0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06,
0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02,
0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b,
0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea,
0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73,
0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85,
0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e,
0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89,
0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b,
0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20,
0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4,
0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31,
0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f,
0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d,
0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef,
0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0,
0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61,
0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26,
0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d};
Aes256::Aes256(const ByteArray &key)
: m_key(ByteArray(key.size() > KEY_SIZE ? KEY_SIZE : key.size(), 0)), m_salt(ByteArray(KEY_SIZE - m_key.size(), 0)), m_rkey(ByteArray(KEY_SIZE, 0)), m_buffer_pos(0), m_remainingLength(0), m_decryptInitialized(false)
{
for (ByteArray::size_type i = 0; i < m_key.size(); ++i)
m_key[i] = key[i];
}
Aes256::~Aes256()
{
}
ByteArray::size_type Aes256::encrypt(const ByteArray &key, const ByteArray &plain, ByteArray &encrypted)
{
Aes256 aes(key);
aes.encrypt_start(plain.size(), encrypted);
aes.encrypt_continue(plain, encrypted);
aes.encrypt_end(encrypted);
return encrypted.size();
}
ByteArray::size_type Aes256::encrypt(const ByteArray &key, const unsigned char *plain, const ByteArray::size_type plain_length, ByteArray &encrypted)
{
Aes256 aes(key);
aes.encrypt_start(plain_length, encrypted);
aes.encrypt_continue(plain, plain_length, encrypted);
aes.encrypt_end(encrypted);
return encrypted.size();
}
ByteArray::size_type Aes256::decrypt(const ByteArray &key, const ByteArray &encrypted, ByteArray &plain)
{
Aes256 aes(key);
aes.decrypt_start(encrypted.size());
aes.decrypt_continue(encrypted, plain);
aes.decrypt_end(plain);
return plain.size();
}
ByteArray::size_type Aes256::decrypt(const ByteArray &key, const unsigned char *encrypted, const ByteArray::size_type encrypted_length, ByteArray &plain)
{
Aes256 aes(key);
aes.decrypt_start(encrypted_length);
aes.decrypt_continue(encrypted, encrypted_length, plain);
aes.decrypt_end(plain);
return plain.size();
}
ByteArray::size_type Aes256::encrypt_start(const ByteArray::size_type plain_length, ByteArray &encrypted)
{
m_remainingLength = plain_length;
// Generate salt
ByteArray::iterator it = m_salt.begin(), itEnd = m_salt.end();
while (it != itEnd)
*(it++) = (rand() & 0xFF);
// Calculate padding
ByteArray::size_type padding = 0;
if (m_remainingLength % BLOCK_SIZE != 0)
padding = (BLOCK_SIZE - (m_remainingLength % BLOCK_SIZE));
m_remainingLength += padding;
// Add salt
encrypted.insert(encrypted.end(), m_salt.begin(), m_salt.end());
m_remainingLength += m_salt.size();
// Add 1 bytes for padding size
encrypted.push_back(padding & 0xFF);
++m_remainingLength;
// Reset buffer
m_buffer_pos = 0;
return encrypted.size();
}
ByteArray::size_type Aes256::encrypt_continue(const ByteArray &plain, ByteArray &encrypted)
{
ByteArray::const_iterator it = plain.begin(), itEnd = plain.end();
while (it != itEnd)
{
m_buffer[m_buffer_pos++] = *(it++);
check_and_encrypt_buffer(encrypted);
}
return encrypted.size();
}
ByteArray::size_type Aes256::encrypt_continue(const unsigned char *plain, const ByteArray::size_type plain_length, ByteArray &encrypted)
{
ByteArray::size_type i = 0;
while (i < plain_length)
{
m_buffer[m_buffer_pos++] = plain[i++];
check_and_encrypt_buffer(encrypted);
}
return encrypted.size();
}
void Aes256::check_and_encrypt_buffer(ByteArray &encrypted)
{
if (m_buffer_pos == BLOCK_SIZE)
{
encrypt(m_buffer);
for (m_buffer_pos = 0; m_buffer_pos < BLOCK_SIZE; ++m_buffer_pos)
{
encrypted.push_back(m_buffer[m_buffer_pos]);
--m_remainingLength;
}
m_buffer_pos = 0;
}
}
ByteArray::size_type Aes256::encrypt_end(ByteArray &encrypted)
{
if (m_buffer_pos > 0)
{
while (m_buffer_pos < BLOCK_SIZE)
m_buffer[m_buffer_pos++] = 0;
encrypt(m_buffer);
for (m_buffer_pos = 0; m_buffer_pos < BLOCK_SIZE; ++m_buffer_pos)
{
encrypted.push_back(m_buffer[m_buffer_pos]);
--m_remainingLength;
}
m_buffer_pos = 0;
}
return encrypted.size();
}
void Aes256::encrypt(unsigned char *buffer)
{
unsigned char i, rcon;
copy_key();
add_round_key(buffer, 0);
for (i = 1, rcon = 1; i < NUM_ROUNDS; ++i)
{
sub_bytes(buffer);
shift_rows(buffer);
mix_columns(buffer);
if (!(i & 1))
expand_enc_key(&rcon);
add_round_key(buffer, i);
}
sub_bytes(buffer);
shift_rows(buffer);
expand_enc_key(&rcon);
add_round_key(buffer, i);
}
ByteArray::size_type Aes256::decrypt_start(const ByteArray::size_type encrypted_length)
{
unsigned char j;
m_remainingLength = encrypted_length;
// Reset salt
for (j = 0; j < m_salt.size(); ++j)
m_salt[j] = 0;
m_remainingLength -= m_salt.size();
// Reset buffer
m_buffer_pos = 0;
m_decryptInitialized = false;
return m_remainingLength;
}
ByteArray::size_type Aes256::decrypt_continue(const ByteArray &encrypted, ByteArray &plain)
{
ByteArray::const_iterator it = encrypted.begin(), itEnd = encrypted.end();
while (it != itEnd)
{
m_buffer[m_buffer_pos++] = *(it++);
check_and_decrypt_buffer(plain);
}
return plain.size();
}
ByteArray::size_type Aes256::decrypt_continue(const unsigned char *encrypted, const ByteArray::size_type encrypted_length, ByteArray &plain)
{
ByteArray::size_type i = 0;
while (i < encrypted_length)
{
m_buffer[m_buffer_pos++] = encrypted[i++];
check_and_decrypt_buffer(plain);
}
return plain.size();
}
void Aes256::check_and_decrypt_buffer(ByteArray &plain)
{
if (!m_decryptInitialized && m_buffer_pos == m_salt.size() + 1)
{
unsigned char j;
ByteArray::size_type padding;
// Get salt
for (j = 0; j < m_salt.size(); ++j)
m_salt[j] = m_buffer[j];
// Get padding
padding = (m_buffer[j] & 0xFF);
m_remainingLength -= padding + 1;
// Start decrypting
m_buffer_pos = 0;
m_decryptInitialized = true;
}
else if (m_decryptInitialized && m_buffer_pos == BLOCK_SIZE)
{
decrypt(m_buffer);
for (m_buffer_pos = 0; m_buffer_pos < BLOCK_SIZE; ++m_buffer_pos)
if (m_remainingLength > 0)
{
plain.push_back(m_buffer[m_buffer_pos]);
--m_remainingLength;
}
m_buffer_pos = 0;
}
}
ByteArray::size_type Aes256::decrypt_end(ByteArray &plain)
{
return plain.size();
}
void Aes256::decrypt(unsigned char *buffer)
{
unsigned char i, rcon = 1;
copy_key();
for (i = NUM_ROUNDS / 2; i > 0; --i)
expand_enc_key(&rcon);
add_round_key(buffer, NUM_ROUNDS);
shift_rows_inv(buffer);
sub_bytes_inv(buffer);
for (i = NUM_ROUNDS, rcon = 0x80; --i;)
{
if ((i & 1))
expand_dec_key(&rcon);
add_round_key(buffer, i);
mix_columns_inv(buffer);
shift_rows_inv(buffer);
sub_bytes_inv(buffer);
}
add_round_key(buffer, i);
}
void Aes256::expand_enc_key(unsigned char *rc)
{
unsigned char i;
m_rkey[0] = m_rkey[0] ^ sbox[m_rkey[29]] ^ (*rc);
m_rkey[1] = m_rkey[1] ^ sbox[m_rkey[30]];
m_rkey[2] = m_rkey[2] ^ sbox[m_rkey[31]];
m_rkey[3] = m_rkey[3] ^ sbox[m_rkey[28]];
*rc = FE(*rc);
for (i = 4; i < 16; i += 4)
{
m_rkey[i] = m_rkey[i] ^ m_rkey[i - 4];
m_rkey[i + 1] = m_rkey[i + 1] ^ m_rkey[i - 3];
m_rkey[i + 2] = m_rkey[i + 2] ^ m_rkey[i - 2];
m_rkey[i + 3] = m_rkey[i + 3] ^ m_rkey[i - 1];
}
m_rkey[16] = m_rkey[16] ^ sbox[m_rkey[12]];
m_rkey[17] = m_rkey[17] ^ sbox[m_rkey[13]];
m_rkey[18] = m_rkey[18] ^ sbox[m_rkey[14]];
m_rkey[19] = m_rkey[19] ^ sbox[m_rkey[15]];
for (i = 20; i < 32; i += 4)
{
m_rkey[i] = m_rkey[i] ^ m_rkey[i - 4];
m_rkey[i + 1] = m_rkey[i + 1] ^ m_rkey[i - 3];
m_rkey[i + 2] = m_rkey[i + 2] ^ m_rkey[i - 2];
m_rkey[i + 3] = m_rkey[i + 3] ^ m_rkey[i - 1];
}
}
void Aes256::expand_dec_key(unsigned char *rc)
{
unsigned char i;
for (i = 28; i > 16; i -= 4)
{
m_rkey[i + 0] = m_rkey[i + 0] ^ m_rkey[i - 4];
m_rkey[i + 1] = m_rkey[i + 1] ^ m_rkey[i - 3];
m_rkey[i + 2] = m_rkey[i + 2] ^ m_rkey[i - 2];
m_rkey[i + 3] = m_rkey[i + 3] ^ m_rkey[i - 1];
}
m_rkey[16] = m_rkey[16] ^ sbox[m_rkey[12]];
m_rkey[17] = m_rkey[17] ^ sbox[m_rkey[13]];
m_rkey[18] = m_rkey[18] ^ sbox[m_rkey[14]];
m_rkey[19] = m_rkey[19] ^ sbox[m_rkey[15]];
for (i = 12; i > 0; i -= 4)
{
m_rkey[i + 0] = m_rkey[i + 0] ^ m_rkey[i - 4];
m_rkey[i + 1] = m_rkey[i + 1] ^ m_rkey[i - 3];
m_rkey[i + 2] = m_rkey[i + 2] ^ m_rkey[i - 2];
m_rkey[i + 3] = m_rkey[i + 3] ^ m_rkey[i - 1];
}
*rc = FD(*rc);
m_rkey[0] = m_rkey[0] ^ sbox[m_rkey[29]] ^ (*rc);
m_rkey[1] = m_rkey[1] ^ sbox[m_rkey[30]];
m_rkey[2] = m_rkey[2] ^ sbox[m_rkey[31]];
m_rkey[3] = m_rkey[3] ^ sbox[m_rkey[28]];
}
void Aes256::sub_bytes(unsigned char *buffer)
{
unsigned char i = KEY_SIZE / 2;
while (i--)
buffer[i] = sbox[buffer[i]];
}
void Aes256::sub_bytes_inv(unsigned char *buffer)
{
unsigned char i = KEY_SIZE / 2;
while (i--)
buffer[i] = sboxinv[buffer[i]];
}
void Aes256::copy_key()
{
ByteArray::size_type i;
for (i = 0; i < m_key.size(); ++i)
m_rkey[i] = m_key[i];
for (i = 0; i < m_salt.size(); ++i)
m_rkey[i + m_key.size()] = m_salt[i];
}
void Aes256::add_round_key(unsigned char *buffer, const unsigned char round)
{
unsigned char i = KEY_SIZE / 2;
while (i--)
buffer[i] ^= m_rkey[(round & 1) ? i + 16 : i];
}
void Aes256::shift_rows(unsigned char *buffer)
{
unsigned char i, j, k, l; /* to make it potentially parallelable :) */
i = buffer[1];
buffer[1] = buffer[5];
buffer[5] = buffer[9];
buffer[9] = buffer[13];
buffer[13] = i;
j = buffer[10];
buffer[10] = buffer[2];
buffer[2] = j;
k = buffer[3];
buffer[3] = buffer[15];
buffer[15] = buffer[11];
buffer[11] = buffer[7];
buffer[7] = k;
l = buffer[14];
buffer[14] = buffer[6];
buffer[6] = l;
}
void Aes256::shift_rows_inv(unsigned char *buffer)
{
unsigned char i, j, k, l; /* same as above :) */
i = buffer[1];
buffer[1] = buffer[13];
buffer[13] = buffer[9];
buffer[9] = buffer[5];
buffer[5] = i;
j = buffer[2];
buffer[2] = buffer[10];
buffer[10] = j;
k = buffer[3];
buffer[3] = buffer[7];
buffer[7] = buffer[11];
buffer[11] = buffer[15];
buffer[15] = k;
l = buffer[6];
buffer[6] = buffer[14];
buffer[14] = l;
}
void Aes256::mix_columns(unsigned char *buffer)
{
unsigned char i, a, b, c, d, e;
for (i = 0; i < 16; i += 4)
{
a = buffer[i];
b = buffer[i + 1];
c = buffer[i + 2];
d = buffer[i + 3];
e = a ^ b ^ c ^ d;
buffer[i] ^= e ^ rj_xtime(a ^ b);
buffer[i + 1] ^= e ^ rj_xtime(b ^ c);
buffer[i + 2] ^= e ^ rj_xtime(c ^ d);
buffer[i + 3] ^= e ^ rj_xtime(d ^ a);
}
}
void Aes256::mix_columns_inv(unsigned char *buffer)
{
unsigned char i, a, b, c, d, e, x, y, z;
for (i = 0; i < 16; i += 4)
{
a = buffer[i];
b = buffer[i + 1];
c = buffer[i + 2];
d = buffer[i + 3];
e = a ^ b ^ c ^ d;
z = rj_xtime(e);
x = e ^ rj_xtime(rj_xtime(z ^ a ^ c));
y = e ^ rj_xtime(rj_xtime(z ^ b ^ d));
buffer[i] ^= x ^ rj_xtime(a ^ b);
buffer[i + 1] ^= y ^ rj_xtime(b ^ c);
buffer[i + 2] ^= x ^ rj_xtime(c ^ d);
buffer[i + 3] ^= y ^ rj_xtime(d ^ a);
}
}
inline unsigned char rj_xtime(unsigned char x)
{
return (x & 0x80) ? ((x << 1) ^ 0x1b) : (x << 1);
}

View File

@ -5,10 +5,11 @@
#include "cryptography.hpp"
#include "buffer.hpp"
#include "aes256.hpp"
Cryptography::Cryptography(const char *password, size_t size)
Cryptography::Cryptography(std::string password)
{
// TODO
key = password;
}
Cryptography::~Cryptography()
@ -17,29 +18,22 @@ Cryptography::~Cryptography()
bool Cryptography::encrypt(Buffer *plain, Buffer *encrypted)
{
// TODO
encrypted->resize(plain->size);
memcpy(encrypted->buffer, plain->buffer, plain->taken);
ByteArray in(plain->buffer, plain->buffer + plain->taken);
ByteArray out;
ByteArray key_b(key.begin(), key.end());
Aes256::encrypt(key_b, in, out);
encrypted->taken = 0;
encrypted->add_end(out.data(), out.size());
return true;
}
bool Cryptography::decrypt(Buffer *encrypted, Buffer *decrypted)
{
// TODO
decrypted->resize(encrypted->size);
memcpy(encrypted->buffer, decrypted->buffer, decrypted->taken);
ByteArray in(encrypted->buffer, encrypted->buffer + encrypted->taken);
ByteArray out;
ByteArray key_b(key.begin(), key.end());
Aes256::decrypt(key_b, in, out);
decrypted->taken = 0;
decrypted->add_end(out.data(), out.size());
return true;
}
bool Cryptography::generate_key_and_iv_from_password(const char *password, size_t size)
{
// TODO
return true;
}
bool Cryptography::handleErrors()
{
// TODO
return false;
}