#include #include "canvas/Tree.hpp" #include "canvas/Circle.hpp" #include "values/mrand.hpp" #include "Math.hpp" #include #include #define ITER_PER_FRAME 5000 constexpr int max_num_of_branches = 3; constexpr int max_color_change = 15; constexpr int min_color_change = -15; constexpr float color_parent_mix = 0.6f; constexpr int max_size = 20; constexpr int min_size = 2; constexpr int max_size_var = 5; constexpr int min_size_var = -5; constexpr int max_size_chnage = 5; constexpr int min_size_change = -5; constexpr int sizes[] = {2, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20}; static_assert(sizeof(sizes) / sizeof(int) == MAX_POSIBLE_DEPTH); float lengths[MAX_DEPTH]; constexpr float max_angles[] = {5.0f, 5.0f, 5.0f, 10.0f, 10.0f, 10.0f, 15.0f, 15.0f, 20.0f, 20.0f, 20.0f}; static_assert(sizeof(max_angles) / sizeof(float) == MAX_POSIBLE_DEPTH); void calculateLevels(int canvasSize) { lengths[0] = canvasSize / 4.0f; for (size_t i = 1; i < MAX_DEPTH; i++) { lengths[i] = lengths[i - 1] * 0.7f; } } // Public void Tree::init(int size) { this->canvasSize = size; start.x = size / 2; start.y = size; calculateLevels(size); } void Tree::draw(Dna *dna) { Circle::setSoftEdge(false); m_dna = dna; branchSeed = dna->branchSeed; draw_calls.push_back({start, 180.0f, 0}); tick(); } bool Tree::tick() { size_t i = 0; while (!draw_calls.empty()) { drawBranch(); draw_calls.pop_front(); i++; if (i >= ITER_PER_FRAME) break; } return draw_calls.empty(); } // Private void Tree::drawBranch() { DrawArgs arg = draw_calls.front(); if (arg.dep == MAX_DEPTH) return; float angle_var = get_angle_var(arg); float angle = ((arg.angleDeg + angle_var) * PI) / 180.0f; float length = get_lenght(arg); float nx = length * std::sin(angle); float ny = length * std::cos(angle); Vector2 end = {arg.start.x + nx, arg.start.y + ny}; int size_start = get_start_size(arg); int size_end = get_end_size(arg, size_start); float fstep = 1.0 / ((length / size_start) * 2.0f); Color colorStart = get_start_color(arg); Color colorEnd = get_end_color(arg.dep, colorStart); for (float i = 0; i < 1; i += fstep) { Vector2 point = Vector2Lerp(arg.start, end, i); Color color = ColorLerp(colorStart, colorEnd, i); int size = Lerp(size_start, size_end, i); DrawCircleV(point, size, color); // Fester on the phone to call DrawCircle insted of the Circle shader // Circle::setColor(color); // Circle::draw(point.x, point.y, thick); // TODO Change to BeginShaderMode and EndShaderMode only onece // use // DrawRectangleGradientEx } // add more branches to draw if (arg.dep + 1 >= MAX_DEPTH) return; float sectors = get_num_of_branches(arg.dep) + 1; float degres = 180.0f / sectors; for (size_t i = 0; i < get_num_of_branches(arg.dep); i++) { float newAngle = arg.angleDeg - 90 + (degres * (i + 1)); draw_calls.push_back({end, newAngle, arg.dep + 1, colorEnd, size_end}); } } inline int Tree::get_num_of_branches(int dep) { if (m_dna->branches[dep].branch_count < 128) return 2; else return 3; } inline Color Tree::get_start_color(DrawArgs &arg) { Color ret = { m_dna->branches[arg.dep].colorR, m_dna->branches[arg.dep].colorG, m_dna->branches[arg.dep].colorB, 255}; if (arg.dep > 0) { ret = ColorLerp(ret, arg.parent, color_parent_mix); } int color_var = Remap(m_dna->branches[arg.dep].color_var, 0, 255, min_color_change, max_color_change); ret.r += color_var * mrand::getFloat(&branchSeed); ret.g += color_var * mrand::getFloat(&branchSeed); ret.b += color_var * mrand::getFloat(&branchSeed); return ret; } inline Color Tree::get_end_color(int dep, Color &start) { return { start.r + m_dna->branches[dep].colorR_change, start.g + m_dna->branches[dep].colorG_change, start.b + m_dna->branches[dep].colorB_change, 255}; } inline int Tree::get_start_size(DrawArgs &arg) { int size = Remap(m_dna->branches[arg.dep].size, 0, 255, min_size, max_size); size += Remap(m_dna->branches[arg.dep].size_var, 0, 255, min_size_var, max_size_var) * mrand::getFloat(&branchSeed); if (arg.dep > 0) { float size_parent = m_dna->branches[arg.dep].size_parent / 255.0f; size = std::lerp(size, arg.size, size_parent); } float mix_level = m_dna->branches[arg.dep].size_level / 255.0f; size = std::lerp(size, sizes[MAX_DEPTH - arg.dep - 1], mix_level); if (size < 1) size = 1; return size; } inline int Tree::get_end_size(DrawArgs &arg, int start) { int size = Remap(m_dna->branches[arg.dep].size_change, 0, 255, min_size_change, max_size_chnage); size += start; if (size < 1) size = 1; return size; } inline float Tree::get_lenght(DrawArgs &arg) { float lenght = lengths[arg.dep]; float lenght_ratio = Remap(m_dna->branches[arg.dep].length, 0, 255, 0.5f, 1.3f); lenght *= lenght_ratio; float lenght_var = Remap(m_dna->branches[arg.dep].length_var, 0, 255, -0.15f, 0.15f); lenght += lenght * lenght_var * mrand::getFloat(&branchSeed); if (lenght < 1) lenght = 1; return lenght; } inline float Tree::get_angle_var(DrawArgs &arg) { float angle_var = Remap(m_dna->branches[arg.dep].branch_angle_var, 0, 255, 0.0f, max_angles[arg.dep]); angle_var = Lerp(angle_var, -angle_var, mrand::getFloat(&branchSeed)); return angle_var; }