Remove two similaritys
This commit is contained in:
parent
92acdf0f53
commit
60a053b929
@ -6,9 +6,10 @@ namespace Similarity
|
||||
// float euclidean_distance(Dna *d1, Dna *d2); direct distance betwen vector. wont give 0 and 1
|
||||
// float dot_product(Dna *d1, Dna *d2); doent return betwen 0 to 1
|
||||
float cosine_similarity(Dna *d1, Dna *d2);
|
||||
float cosine_similarity_int(Dna *d1, Dna *d2);
|
||||
float hamming_distance(Dna *d1, Dna *d2);
|
||||
float jaccard_index(Dna *d1, Dna *d2);
|
||||
float levenshtein_distance(Dna *d1, Dna *d2);
|
||||
// float jaccard_index(Dna *d1, Dna *d2); // primerja unio genov naprimer gleda ce je gen za nebo isti z genom za barvo za liste, to nerabimo
|
||||
// float levenshtein_distance(Dna *d1, Dna *d2); // odstranjen ker mi vrne iste podatke kot hamming distance ki je bolj enostaven za izracun
|
||||
// float needleman_wunsch(Dna *d1, Dna *d2); used for bioinformatics and aligment. Dont need its aligned alredy
|
||||
|
||||
typedef float(simil_func)(Dna *d1, Dna *d2);
|
||||
|
@ -7,7 +7,10 @@
|
||||
|
||||
namespace Similarity
|
||||
{
|
||||
|
||||
// todo: use int8_t insted of uint8_t and map data
|
||||
// 0 -> -128
|
||||
// 255 -> 127
|
||||
// int8_t = uint8_t - 128
|
||||
float cosine_similarity(Dna *d1, Dna *d2)
|
||||
{
|
||||
uint8_t *d1a = (uint8_t *)d1;
|
||||
@ -28,6 +31,31 @@ namespace Similarity
|
||||
return dot_prod / (mag1 * mag2);
|
||||
}
|
||||
|
||||
float cosine_similarity_int(Dna *d1, Dna *d2)
|
||||
{
|
||||
auto map = [](uint8_t a) -> int8_t
|
||||
{ return a - 128; };
|
||||
|
||||
uint8_t *d1a = (uint8_t *)d1;
|
||||
uint8_t *d2a = (uint8_t *)d2;
|
||||
|
||||
float mag1 = 0.0f;
|
||||
float mag2 = 0.0f;
|
||||
float dot_prod = 0.0f;
|
||||
for (size_t i = 0; i < sizeof(Dna); i++)
|
||||
{
|
||||
int8_t a = map(d1a[i]);
|
||||
int8_t b = map(d2a[i]);
|
||||
dot_prod += a * b;
|
||||
mag1 += a * a;
|
||||
mag2 += b * b;
|
||||
}
|
||||
mag1 = sqrt(mag1);
|
||||
mag2 = sqrt(mag2);
|
||||
|
||||
return dot_prod / (mag1 * mag2);
|
||||
}
|
||||
|
||||
float hamming_distance(Dna *d1, Dna *d2)
|
||||
{
|
||||
uint8_t *d1a = (uint8_t *)d1;
|
||||
@ -43,59 +71,6 @@ namespace Similarity
|
||||
return 1 - (distance / sizeof(Dna));
|
||||
}
|
||||
|
||||
float jaccard_index(Dna *d1, Dna *d2)
|
||||
{
|
||||
uint8_t *d1a = (uint8_t *)d1;
|
||||
uint8_t *d2a = (uint8_t *)d2;
|
||||
size_t intersection = 0;
|
||||
size_t union_size = sizeof(Dna) + sizeof(Dna);
|
||||
|
||||
for (size_t i = 0; i < sizeof(Dna); i++)
|
||||
{
|
||||
for (size_t j = 0; j < sizeof(Dna); j++)
|
||||
{
|
||||
if (d1a[i] == d2a[j])
|
||||
{
|
||||
intersection++;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
union_size -= intersection;
|
||||
return (float)intersection / union_size;
|
||||
}
|
||||
|
||||
float levenshtein_distance(Dna *d1, Dna *d2)
|
||||
{
|
||||
auto min = [](uint8_t a, uint8_t b, uint8_t c) -> uint8_t
|
||||
{
|
||||
return (a < b ? (a < c ? a : c) : (b < c ? b : c));
|
||||
};
|
||||
|
||||
uint8_t *d1a = (uint8_t *)d1;
|
||||
uint8_t *d2a = (uint8_t *)d2;
|
||||
float matrix[sizeof(Dna) + 1][sizeof(Dna) + 1];
|
||||
for (size_t i = 0; i <= sizeof(Dna); i++)
|
||||
{
|
||||
matrix[i][0] = i;
|
||||
}
|
||||
for (size_t j = 0; j <= sizeof(Dna); j++)
|
||||
{
|
||||
matrix[0][j] = j;
|
||||
}
|
||||
for (size_t i = 1; i <= sizeof(Dna); i++)
|
||||
{
|
||||
for (size_t j = 1; j <= sizeof(Dna); j++)
|
||||
{
|
||||
uint8_t cost = (d1a[i - 1] == d2a[j - 1]) ? 0 : 1;
|
||||
matrix[i][j] = min(matrix[i - 1][j] + 1, matrix[i][j - 1] + 1, matrix[i - 1][j - 1] + cost);
|
||||
}
|
||||
}
|
||||
float ld = matrix[sizeof(Dna)][sizeof(Dna)];
|
||||
return 1 - (ld / sizeof(Dna));
|
||||
}
|
||||
|
||||
float calc_similarity(std::vector<Dna> &vec, simil_func f)
|
||||
{
|
||||
size_t num_pairs = (vec.size() * (vec.size() - 1)) / 2;
|
||||
|
@ -45,5 +45,5 @@ private:
|
||||
int drawY = 0;
|
||||
void setUpManager();
|
||||
|
||||
std::array<float, 4> simil;
|
||||
std::array<float, 3> simil;
|
||||
};
|
@ -102,9 +102,7 @@ void Vapp::update()
|
||||
|
||||
simil[0] = Similarity::calc_similarity(manager.vector, Similarity::cosine_similarity);
|
||||
simil[1] = Similarity::calc_similarity(manager.vector, Similarity::hamming_distance);
|
||||
simil[2] = Similarity::calc_similarity(manager.vector, Similarity::jaccard_index);
|
||||
simil[3] = Similarity::calc_similarity(manager.vector, Similarity::levenshtein_distance);
|
||||
|
||||
simil[2] = Similarity::calc_similarity(manager.vector, Similarity::cosine_similarity_int);
|
||||
stageOfDrawing = DrawingStage::done;
|
||||
break;
|
||||
|
||||
@ -174,8 +172,7 @@ void Vapp::draw()
|
||||
ImGui::Begin("Status", &showStats);
|
||||
ImGui::LabelText("##sim1", "cosine_similarity: %f", simil[0]);
|
||||
ImGui::LabelText("##sim2", "hamming_distance: %f", simil[1]);
|
||||
ImGui::LabelText("##sim3", "jaccard_index: %f", simil[2]);
|
||||
ImGui::LabelText("##sim4", "levenshtein_distance: %f", simil[3]);
|
||||
ImGui::LabelText("##sim3", "cosine_similarity_int: %f", simil[2]);
|
||||
ImGui::End();
|
||||
}
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user